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The Lie algebras associated with infinitesimal symmetry transformations of 
third-order differential equations of interest to classical electrodynamics and 
stochastic electrodynamics have been obtained. The structure constants for a 
general case are presented and the Lie algebra for each particular application is 
easily achieved. By the method used here it is not necessary to know the explicit 
expressions of the infinitesimal generators in order to determine the structure 
constants of the Lie algebra. 

1. INTRODUCTION 

The significance of symmetry transformations in mathematical and 
theoretical physics is well known (Sudarshan and Mukunda, 1974; Vianna, 
1989; Wybourne, 1974). For example: (i) continuous symmetry groups of 
given field equations are helpful for obtaining similarity solutions (Bluman 
and Cole, 1974; Steeb, 1985); (ii) from Noether's theorem (Noether, 1918) 
a close connection is obtained between the conserved quantities of a 
Lagrangian dynamical system and those transformations of coordinates 
and time which preserve the action integral; (iii) the transformations which 
leave the action integral invariant form a Lie group which itself may be a 
proper subgroup of the group of transformations leaving the equation of 
motion invariant (Rio Preto and Vianna, 1987). As physical systems are 
described in general by second-order differential equations, the symmetries 
of this class of equation have been studied by several authors (Lutzky, 
1978; Anderson and Davison, 1974; Leach, 1980; Mariwalla, 1975; Stein- 
berg and Wolf, 1981; Steeb, 1985). 

It is also known that there are physical phenomena which are de- 
scribed by third-order ordinary differential equations. These equations, 
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which are related to classical electrodynamics (a free radiating particle, the 
radiating oscillator, for instance) (Abraham, 1905; Lorentz, 1952; Landau 
and Lifshitz, 1985) and stochastic electrodynamics (Santos, 1974a,b), how- 
ever, have not received corresponding attention. In consequence, one does 
not yet have a general study of their symmetry transformations. This is our 
purpose in the present paper. We consider a class of differential equations 
given by 

=fo(t) + f l  (t)x q-f2(t)Yc +f3(t)5~ 

and we obtain their infinitesimal symmetry transformations and the associ- 
ated Lie algebras. 

Several methods (Rio Preto and Vianna, 1987; Aguirre and Krause, 
1984; Lutzky, 1979; Moreira et al., 1985) can be found in the current litera- 
ture to study invariance properties of differential equations. We shall base 
our study on the procedure introduced by Aguirre and Krause (1984) in the 
discussion of the Newtonian one-dimensional linear systems and extended 
by us (Soares Neto and Vianna, 1988) in the analysis of the Langevin 
equation. In this context one must observe that while for the second-order 
ordinary differential equation a Lie group has no more than eight essential 
parameters (Aguirre and Krause, 1984), for a third-order ordinary differen- 
tial equation, the maximum number of essential parameters, if the equation 
admits a continuous symmetry group, is seven (Cohen, 1931). 

This paper is organized as follows. In Section 2, we obtain the 
fundamental equations for the determination of the infinitesimal symmetry 
transformations of a given third-order ordinary differential equation; in 
this section we also present the general equations to determine the structure 
constants of the Lie algebra and to obtain the infinitesimal generators of 
each particular differential equation with the knowledge of the functions 
f~(t) and their derivatives. In Section 3, we apply our equations to some 
specific problems. For the sake of completeness we consider some purely 
mathematical examples and, in order to test the method, we analyze an 
equation which has been studied by other methods (Hill, 1951; Oliveira, 
1974), that is, 3~ = 0. In fact, this is the only case of the class of equations 
considered here which has been studied in the literature by other authors 
and we compare our results with those obtained by them. Finally, Section 
4 contains some concluding remarks. 

2. THE SYMMETRY E Q U A T I O N S  

We are interested in the symmetry transformations of the following 
class of third-order differential equations: 

=fo(t) +A (t)x +f2(t)x +f3(t)x (1) 
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where f~(O (i - O, 1 . . . . .  3) are differentiable functions and 

dx d 2 x  d 3 x  

2 =~-~, 5~ -- dt 2 , ~ - dt a 

According to the Lie group theory, the symmetry transformations 
have the general form expressed by 

and 

t' = t + eq(t, x) (2) 

x" = x + tO(t, x)  (3) 

Here 0 < e ~ 1. The functions q(t, x) and O(t, x) are still undefined quanti- 
ties and will be determined by the invariance condition (1) under the 
transformations given by (2) and (3). In the following, we will denote the 
partial derivatives of  rl(t,x) and O(t,x) by r l t ( t , x )=&l( t ,x ) / t3 t ,  
Ox(t, x) = tgO(t, x)/Ox, et.. The transformed equation is 

x" =fo (t') + f l  ( t ' )x '  + f2(t')2' +f3 (t ')s (4) 

Inserting equations (2) and (3) into equation (4), expanding the functions 
f~(t') (i = 0, 1, 2, 3) up to the first order of  the parameter ~, and separating 
the resulting equation according to the exponents of  s we obtain 

l~xxxX 4 - -  3tlxxt~C 3 - -  3?]xtt.~ 2 - -  4fo( t)tlx2 -- 4 f  ~ ( t)qxX2 

-- 3fE(t)qx 22 -- ~I,,2 -- 3fo(t)rb -- 3fl(t)qtx -- 2f2(t)qjc 

+ O x x x  ~3 + 30xx tX  2 + 30x.2 +fo(t)O~ +f~(t)Oxx 

+ O.t --fCo(t)q - - f ,  (t)O - - ~  (t)rlX --A(t)O, -fc2(t)q2 
+f3(t)qx~23 + 2f3(t)r/~,22 +f3 (t)r/.2 --A(t)Oxx* 2 

--2f3(t)Ox,2 --f3(t)O. = 0 (5) 

-- 6rL, x 22 -- 4f3(t)t/~2 -- 3qtt -- 3f3(t)q, + 30xx2 

+ 30x, + f3(t)Ox - 9,1x,2 + 3f3(t)qx2 + 2f3 (t)q, +?3(t)r/-f3(t)Ox = 0 (6) 

and 

3qx = 0 

Equation (7) has a straightforward solution 

,l(t, x) = 4', (t) 

(7) 

(8) 
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of (~)o and ~, we obtain the following relations: 

-3~'1 -f3(t)51 + 3G, -f3(t)4~l = 0 

and 

Soares Neto and Vianna 

Inserting equation (8) into equation (6) and collecting the coefficients 

(9) 

and 

- 3t~l -f3(t)51 + 362 -j'3(t)~bl = 0 (12) 

then equations (8) and (11) are inserted into equation (5) and the co- 
efficients of  x and ~ give rise to the following equations, 

473 --f2(t)53 --fl  (t)~b3 -f3(t)q~3 - 3f0(t)51 -f0(t)q~l +fo(t)~b2 = 0 (13) 

--471 + 2f3 (t)q~l -- 2f2(t)51 -.fE(t)~bl + 3~'z -- 2f3 (t)52 = 0 (14) 

$2 -- A (t)~2 -- f2 (t)~2 -- 3fl (051 -- A (t)~bl = 0 (15) 

Finally, we derive equation (12) in relation to time, obtaining an 
expression for q~2(t) and substitute it, together with (12), in (15). The result 
is 

$1 + [ j ~ 3 ( t ) - - ~ f 2 ( t ) - - f x ( t ) l S , + [ ~ A ( t  ) --~j '2(t)--~f3(t)j '3(t) t~l(t  ) = 0  

(16) 

Equations (12), (13) and equations (15), (16) are the fundamental 
equations for the determination of the symmetry transformations. We seek 
general expressions which will make it possible to obtain the structure 
constants of  the Lie algebra of each particular differential equation with the 
knowledge of the functions f.(t) and their derivatives at t = 0. In order to 
do so, we introduce some definitions. The infinitesimal generators of a Lie 
algebra in an (x, t) realization are defined as 

0 O (17) Xa(t, x) = qa(t, x) -~ + Oa(t, x) ~x 

The maximum number of generators of a Lie algebra of a third-order 
differential equation is seven (Cohen, 1931). In this case, the index a of (17) 

30xx = 0 (10) 

Solving equation (10), we get 

O(t, x) = ~b2(t)x + ~b3(t ) (11) 

Proceeding, first we substitute equation (11) in equation (9) and 
obtain 
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runs from 1 to 7. The generators obey the following relations: 

[Xa, Xb] =f~bXc, a, b, c = 1, 2 . . . . .  7 (18) 

where [X,, Xb] represents the commutator of  Ira and Xb and the quantities 
f~b are the structure constants of the group. 

Using equations (8) and (11), we obtain 

r/. = 1#,.. (19) 

Oa = 1#2.a x + 1#3.a (20) 

Substituting equations (19) and (20) in equation (18) and collecting 
the coefficients of x ~ and x, we derive the following equations: 

f Cb1# l .c =1#  l .a ~ l .b --1# l .b 4) l .a 

f Cb1#2.c =1#  l .a ~2.b --1# , .b ~2. .  

f ~b1#3.c = 1#,..$3.b + 1#3..1#2.b --  1#l.b~3.a --  1#3.b1#2.a 

The first and second 

(21) 

(22) 

(23) 

derivatives of  equation (22) give us the remaining 
equations, 

f i b  (b~.c = 1#1.,r -- 

fCab~l.c = ~l .ab' l .  b + 

f ~b(O3.c = $,..$3.b + 

-4,,4,,.. 

i#1.b 61.a 

<..$, b <b$ , .  

1# l .a ~3.b "{- 4) 3..1# 2.b "~ 1# 3.a 4)2.b 

- < b & o  - 4,,b1#2.. -1# , .b4 ,2 . .  

(24) 

(25) 

(26) 

fCb~3.c  = ~)'l.ag~3.b "+" 2~)l.ab;.  b "l- 1#1.a&.b + ~)'3.a1#2.b 

+ 2q~3.a4~2.b + 1#3.a~2.b --~l.b~/)3.a "-- 2q~,.bq~3.. -- 1#,.bq~.. 

- 6,.b1#2.. -- 2O~,.bq~2.. -- 1#2.61#2., (27) 

SO far, we have concluded that the general expressions for ~/(t, x) and 
O(t, x) are 

q(t, x) = ql1# H + q21#1. 2 + q31#1. 3 + q41#1. 4 

+ qS1#1.5 + q61#1. 6 + q71#1. 7 (28) 

O(t, X) = ql(1#2.1X "{- 1#3.1) + q2(1#2.2X + 1#3.2) + q3(1#2.3X + 1#3.3) 

+ q4(1#2.4X "q'- 1#3.4) + q5(1#2.5X -{" 1#3.5) -{- q6(1#2.6X -It" 1#3.6) 

+ q7(1#2.TX + 1#3.7) (29) 
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Here q~ (a = 1, 2 . . . .  ,7 ) ,  are arbitrary constants and we choose  them to be 

q ~ = t/(0, 0) 

q2 = /Tt (0 ,  0) 

q3 = r/t,(0, O) 

q" = o(o,  o) (30) 

q5 = 0t (0 ,  0) 

1 
q6 = "2 qtt(O, O) 

q7 = Ox(O ' O) 

Table I. The Structure Constants of :~ =fo(t) +fl(t)x +f2(t)s +f3(t)s ~ 

f ]2  = | 

f~2 =A(O) 
i 2 q- sf3(O) 

-A(o) 

f 2  3 = 1 

f 3  3 = | 

f~2 = 3fo(0)/2 

f ~ 2 = A ( 0 ) / 3  f ~ 3 =  1 

f~s 4 = - f3(0) /3  

f ~  = --f3(0)/3 

f ~ =  - 1  

f~4 = f t  (0)/2 

+)~(o)/12 

- f ,  Co)fi(o)/6 

-?~(o>/4 
f~4 =fx(0)/6 

- f ~ ( o ) / 6  

- A ( o ) / 2  

f~4 = --f3(0)/6 

f145 = 1 

f~6 = 2 

f ~  = l 

f%=f=(O) /2  f % = f 3 ( O )  

- -~(0) /3  f ~ = 2  

f~5=--f3(O)/3 
f % =  --1/2 

f~7 = t 

f~7 = 1 

f,% = - fo(o) /2  

f~7 = 2 

aWe denote the derivative offt(t) at t = 0 by ~(0).  
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EquationS (21)-(27) are identities which hold for all t; hence we can 
consider them at t = 0. In consequence, substituting the initial conditions 
(30) in (28) and (29) and inserting the resulting expression into (21)-(27) 
for t = 0, we obtain the equations for the structure constants. The equa- 

. , ,  

tions depend upon the.a, 4~Lb, q~Lb, ~bLb, etc., and we replace them by the 
values defined by (13), (14) and (16). The final equations are easily solved 
for the structure constantsf~b and we show them in Table I. However, this 
table must be used with care! Equation (15) has not been used in the 
derivation of the structure constants and, as we will see in the examples, it 
plays the role of a constraint for some choices of the functions f~ (t). The 
correct way of using Table I is as follows: (a) equation (16) must be solved 
and the expression for ~bl(t) obtained, (b) equation (12) is then solved for 
q~2(t) and, finally, (c) ~bl(t ) and ~b2(t ) must be used together with (15) to 
verify whether there are some null solutions. If not, Table I gives the 
structure constants straightforwardly. In the positive case, (15) will also 
point out which generators are null and we should pick up the structure 
constants from Table I excluding those associated with the null generators. 
In order to obtain the explicit expression for the generators of the algebra, 
equation (14) should also be solved. 

3. APPLICATIONS 

In this section we address a couple of specific examples. In the first 
one, we go through all steps proposed in the previous section in order to 
make clear the procedure. In the remaining, we focus on particular points 
to show some features of either the method or the system being analyzed. 

3.1. s 

Hill (1951) and Oliveira (1974) have already studied this equation 
using different approaches from the present one. To our knowledge, this is 
the only equation of the class analyzed here for which the Lie algebra has 
been obtained previously. In this example f~ (0) = 0 for i = 0, 1, 2, 3, and, 
the fundamental equations (13), (14), and (16) become 

t~2( t )  = ~'l(t) (31) 

t~'a(t) = 0 (32) 

q~l (t) = 0 (33) 

The equation for the constraint is 

bE(t) = 0 (34) 
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We see that the solutions of equations (31)-(33) are also solutions of 
equation (34). Therefore, for this example, the dimension of the algebra is 
seven. The expressions for q(t, x) and O(t, x) ,  by using equations (8) and 
(11) and the solution of (31)-(34), are 

tl(t, x )  = at z + bt + c (35) 

O(t, x)  = 2 a t x  + dx  + et 2 + f t  + g (36) 

where the arbitrary constants a , . . . ,  g are determined from equations (30). 
Using in equations (35) and (36) the initial conditions defined by (30), we 
obtain from (17) the generators [see equations (19), (20), (28), and (29)] 

0 
X1 = Ot (37) 

0 
Xz  = t -~ (38) 

1 t2 a d (39) x 3  = + tX 

0 
X4 = 0--'~ (40) 

0 
Xs  = t - -  (41) 

Ox 

)(6 = t 2 - -  ~ (42) 
0x 

X 7 = x a-~ (43) 

The generators obtained by Hill (1951) are a linear combination of 
those showed by equations (37)-(43). We show the Lie algebra in Table II. 

Table II. Lie Algebra of ~ = 0 a 

xl x2 x~ x~ x, x6 x7 

X t 0 X, X 2 + X 7 0 X 4 2X 5 0 
x2 -x,. o x3 o x5 2x6 o 
x3 - x 2 - x 7  - x 3  o - x 5  - �89 o o 
x4 o o x5 o o o x4 
x5 - x 4  - x 5  �89 o o o x5 
-u --2X5 --2X6 0 0 0 0 X 6 
x7 o o o - x4 - x5 - x4 o 

~Fhe generators X4, Xs, and X 6 form an Abelian subalgebra. 



Lie Algebras of Electrodynamics 607 

3.2. s  

Here we show an equation for which the first derivative of  x has been 
included. As in the previous case, this example is purely mathematical and 
there is no physical interpretation for it. The fundamental equations (12), 
(13), and (16) are 

62 = 6,  (44) 

~3 -- k63 = 0 (45) 

~ - k t ,  = 0 (46) 

The constraint in this case is 

~2 - k62 = 0 (47) 

The seven solutions of  equations (44)-(46)  are also solutions of  
equation (47). Table III shows the Lie algebra associated with this equa- 
tion. A straightforward calculation determines the functions rl(t, x) and 
O(t, x) and the infinitesimal generators. 

3.3. ~ = kS/. A Free Radiating Particle 

The inclusion of  5/gives us the possibility of  a physical interpretation 
for this third-order differential equation. In this case, the particle is free 
from an external force, but suffers a process of  negative acceleration due to 
the radiation. We have 

f3(t) = k (48) 

fo(O = A  (t) =A( t )  = O, (49) 

Table HI. Lie Algebra of  Y = k:~ 

x, x2 x3 x~ x5 x6 x7 

x~ 0 x ,  +kX3 x2 + X7 0 X, +�89 2X5 0 
X 2 - X , - k ,  X3 0 X3 -�89 Xs 2X6 0 
X3 - X2 - X7 - X3 0 - X5 ' -~X6 0 0 
X4 0 �89 X~ 0 0 0 X4 
X5 - X 4 -  �89 -X~ ' ~x6 o o o x~ 
X 6 -2X 5 -2X 6 0 0 0 0 X" 6 
X7 0 0 0 -X~ -X,  -X6 0 
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The equations for 4)1, 4)2, and 4)3 are 

1 2" g ~ - ~ k  ~ = 0  (50) 

3G = 34"~ + k4~ (5~) 

g~ - kG = 0 (52) 

The expression for the constraint is 

g~ - k~, = o (53) 

Solving equations (50)-(52), we obtain, 

4)3 = f ek' + gt  + h (56) 

where a . . . .  , h are arbitrary constants. Inserting equation (55) into equa- 
tion (53), we obtain 

a = o =- o (57) 

Finally, using the initial conditions (30), we get the expressions for 
tt(x, 0 and O(x, t), 

q(t, x) --- q~ (58) 

O(t, x)  = qZx + e k' -- ~ t -- q + qSt (59) 

This is an example where equation (15) has restricted the number of 
the group parameters. The equation for a free radiating particle has an 
associated Lie algebra of only five generators. The algebra is shown in 
Table IV. In this particular example, we notice the presence of an Abelian 
subalgebra formed by X1 and X4. 

3.4. s - -  k a s  - -  k i x  ---- O. The Radiating Osei~ator 

If we consider 
3 m~c3co2o 

A ( O  = k,  = 2 e 2 

and 
3 m3c 3 

A ( 0 = k 3 =  2 e z 

(6o) 

( 6 0  
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Table IV. The Lie Algebra Associated to the Equation with the Free Radiating Particle 
Equation a 

xl x4 x5 x6 I"7 

X 1 0 0 X 4 2X 5 + k X  6 0 
X 4 0 0 0 0 X 4 
z~ 5 -- X 4 0 0 0 X 5 
X 6 -- 2X 5 -- k X  6 0 0 0 X 6 
X 7 0 --z~ 4 - - X  5 - - X  6 0 

aEquation (15) has restricted the algebra dimension from seven to five. 

the equation of  this section will represent a particle of charge e and mass 
m oscillating with angular frequency 090 and radiating. 

We also have a fifth-dimensional algebra for this case, and the 
infinitesimal generators are 

X~ at 

)(4 I m 2 m ~ - m ~ m 3  ml, m ~ m 3 - - m l m ~  = e q- e m2t --I- 
c c 

I 2 2 
)(5 = m 2 - -  m 3  emi t  

c + - -  

X6 = Fm3 - -  m2 emit  + _ _  

L c 

X T ~  X - 
dx 

where 

2 2 2 2 - ] 0  
m 3 - - m l  emzt + m l  ~ m 2  em3t 

c c J -~x 

- -  m2 - -  m l  1 O m l  m 3 era2 t .-~ era3 t _ _  

C C J OX 

k3 m 1 = A 1/3 + B1/3 +._~ 

m~ = ?A I/3 ..]_ ~,2B1/3 _{_ k_2 
3 

m3 = 72A i/3 + 7Bl/3 + k..2 
3 

The quantities A, B, and ? are defined as 

A = k l /2  + k3/27 + (k~ + 4klk3/27  + 4k6/729 - k~/729) m 

B = k l /2  + k~/27 - (k~ + 4k~k]/27 + 4k36/729 - k6/729) I/2 

= ( - 1 + i~/-3)/2 

(62) 

mlm -m m  
C 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 
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Table V. The Algebra of ~ --k3.~ - -k lx  = 0  

x, x~ x~ x, x~ 

X, 0 �89 X6 X4 2X5 + k3X6 0 
x,, --~ kl X 6 0 0 0 X4 
x~ - x ,  o o o x~ 
X 6 - 2 X s - k 3 X  6 0 0 0 X 6 
X 7 0 - X  4 - - X  5 - - X  6 0 

We show the Lie algebra associated with this equation in Table V. The 
Abelian subalgebra {X4, Xs, Xr} is also present in the fifth-dimensional 
algebras. 

3.5. ~ - - k 3 ~ -  klx = --fo(t). The Fundamental Equation of the 
Stochastic Eleetrodynamics 

The so-called Langevin equation is obtained for k~ and k3 defined by 
equations (60) and (61), respectively, and 

fo(t)  = - ~  c 3 dak ex(k,  2)h(Ogk) COS[C0kt -- k" x -- iO(k, z)] (73) 
2 1 

The physical quantities entering this formula are defined in Soares 
Neto and Vianna (1988), Santos (1974a,b), and Boyer (1975). Due to the 
expression for f0(t), the equation for ~b3(t) is not solvable. The explicit 
expressions for the generators cannot be obtained in this case. However, 
the number of linearly independent solutions is provided by (12), (16), and 
(15) and the structure constants are obtained directly from Table I. We 
show the algebra in Table VI. We refer the reader to Soares Neto and 
Vianna (1988), where we have studied in detail various aspects of the 
Langevin equation. 

Table Vl. The Lie Algebra of the Fundamental Equation of Stochastic Eleetrodynamics 

x~ x4 x5 x6 x7 

�89 X6 X 1 0 X 4 2X 5 + k3X 6 -�89 
x, -�89 0 0 0 x, 
x5 -x4 0 0 0 X5 
x6 -2Xs-k3X~ 0 0 0 X6 
X 7 �89 -X 4 -X 5 -X 6 0 
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4. CONCLUDING REMARKS 

We have obtained the Lie algebra of a class of third-order differential 
equations of interest to classical electrodynamics and stochastic electrody- 
namics. The method we have used is general and the structure constants of 
each specific equation are obtained by solving simple differential equations. 
We believe that the extension of the present method for nonlinear equa- 
tions is straightforward. This procedure lends itself to an easy computer 
implementation using the REDUCE language; first attempts in this direc- 
tion have been made and we are working on a more ambitious program. 

A characteristic feature of the method is that the constant structure 
(Lie algebra) are determined although the functions q(t, x) and O(t, x) and 
the generators X~(t, x) may be unknown (see, for instance, Section 3.5); 
this certainly is an advantage of this procedure. In fact, our results (see 
Table I) show that the Lie algebra of a third-order ordinary differential 
equation of the type expressed in equation (1) depends exclusively on the 
initial values fo(0), f l  (0), f2(0), f3(0), f3(0), and f3 (0), whereas the determi- 
nation of the infinitesimal generators X~(t, x)  requires the knowledge of the 
functions f0(t), f l  (t), f2(t), and f3(t), their first derivatives, and f~(t) for all 
t, in order to solve equations (13)-(16). As different sets of initial 
conditions correspond to different parametrizations of the group, it follows 
that the resulting commutation relations also depend on the chosen set of 
initial conditions. However, this change is inherent in the Lie group 
formalism and corresponds to a change of the basis of the algebra. 

Concluding this section, we stress some important aspects from our 
viewpoint. The equations in which the coefficient of 5~ is different from zero 
have a fifth-dimensional Lie algebra, while for those cases which f3(t) = 0, 
the algebra has seven linearly independent generators. There is a three- 
dimensional Abelian subalgebra formed by X4, Xs, and )(6 common to all 
examples studied here. The three two-dimensional subalgebras (X7, X4), 
(X 7, )(5), and (X 7, X6) are also present in all cases. 
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